Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 301: 120621, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35545133

RESUMO

AIMS: Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS: By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS: We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE: Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipogênese
2.
Front Oncol ; 11: 719865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386430

RESUMO

Advanced prostate cancer (PCa) represents the fifth cause of cancer death worldwide. Although survival has improved with second-generation androgen signaling and Parp inhibitors, the benefits are not long-lasting, and new therapeutic approaches are sorely needed. Lipids and their metabolism have recently reached the spotlight with accumulating evidence for their role as promoters of PCa development, progression, and metastasis. As a result, interest in targeting enzymes/transporters involved in lipid metabolism is rapidly growing. Moreover, the use of lipogenic signatures to predict prognosis and resistance to therapy has been recently explored with promising results. Despite the well-known association between obesity with PCa lethality, the underlying mechanistic role of diet/obesity-derived metabolites has only lately been unveiled. Furthermore, the role of lipids as energy source, building blocks, and signaling molecules in cancer cells has now been revisited and expanded in the context of the tumor microenvironment (TME), which is heavily influenced by the external environment and nutrient availability. Here, we describe how lipids, their enzymes, transporters, and modulators can promote PCa development and progression, and we emphasize the role of lipids in shaping TME. In a therapeutic perspective, we describe the ongoing efforts in targeting lipogenic hubs. Finally, we highlight studies supporting dietary modulation in the adjuvant setting with the purpose of achieving greater efficacy of the standard of care and of synthetic lethality. PCa progression is "a matter of fats", and the more we understand about the role of lipids as key players in this process, the better we can develop approaches to counteract their tumor promoter activity while preserving their beneficial properties.

3.
Cell Cycle ; 18(14): 1646-1659, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203714

RESUMO

Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Ácidos Graxos/biossíntese , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Mitose/efeitos dos fármacos , Membrana Nuclear/metabolismo , Fosfatidilcolinas/biossíntese , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Etoposídeo/farmacologia , Ácido Graxo Sintases/metabolismo , Células HeLa , Humanos , Lipogênese/fisiologia , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/química , Mitose/fisiologia , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/enzimologia
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1587-1594, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919479

RESUMO

Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.


Assuntos
Proliferação de Células/fisiologia , Enterócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Células CACO-2 , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/genética , Humanos
5.
BMC Genomics ; 18(1): 223, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274201

RESUMO

BACKGROUND: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. RESULTS: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. CONCLUSIONS: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.


Assuntos
Clorófitas/metabolismo , Cloroplastos/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Redes e Vias Metabólicas , Triglicerídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Clorófitas/classificação , Clorófitas/genética , Cloroplastos/genética , Biologia Computacional/métodos , Simulação por Computador , Sequência Conservada , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/genética , Evolução Molecular , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Redes e Vias Metabólicas/ética , Filogenia , Matrizes de Pontuação de Posição Específica , Triglicerídeos/biossíntese
6.
Cancer Res ; 74(24): 7198-204, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25322691

RESUMO

Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its own metabolic reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass spectrometry-based metabolite profiling was performed on immortalized human prostate epithelial cells transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-specific promoter, and human prostate specimens characterized for the expression and activation of these oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and targeted therapeutics.


Assuntos
Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Gradação de Tumores , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-myc/genética
7.
EMBO Mol Med ; 6(4): 519-38, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24497570

RESUMO

5'AMP-activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63-78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK-mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis-driven PCas. Finally, we demonstrate that MT 63-78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/administração & dosagem , Lipogênese/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/fisiopatologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/enzimologia
8.
Cell Cycle ; 13(5): 859-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24418822

RESUMO

Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G 2/M to G 1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G 2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This "lipogenic checkpoint" at G 2/M may be therapeutically exploited for hyperproliferative diseases such as cancer.


Assuntos
Divisão Celular/fisiologia , Ácidos Graxos/biossíntese , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Fase G1 , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HeLa , Humanos , Redes e Vias Metabólicas , Mitose
9.
PLoS One ; 4(8): e6812, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19710915

RESUMO

Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Delta9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Adenilato Quinase/antagonistas & inibidores , Linhagem Celular Tumoral , Glicólise , Humanos , Lipogênese , Neoplasias/enzimologia
10.
Life Sci ; 84(3-4): 119-24, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19059270

RESUMO

AIMS: Normal human cells in culture progressively lose their capacity for replication, ending in an irreversible arrested state known as replicative senescence. Senescence has been functionally associated to the process of organismal ageing and is also considered a major tumor-suppressing mechanism. Although a great deal of knowledge has uncovered many of the molecular aspects of senescence, little is known about the regulation of lipid synthesis, particularly the biosynthesis and Delta9-desaturation of fatty acids, during the senescence process. MAIN METHODS: By using immunoblotting and metabolic radiolabeling, we determined the senescence-associated changes in major lipogenic pathways. KEY FINDINGS: The levels of fatty acid synthase and stearoyl-CoA desaturase-1 and, consequently, the formation of monounsaturated fatty acids, were notably decreased in senescent cells when compared to proliferating (young) fibroblasts. Moreover, we detected a reduction in the de novo synthesis of phospholipids with a concomitant increase in the formation of cholesterol in senescent cells compared to young fibroblasts. Finally, it was found that exogenous fatty acids were preferentially incorporated into the triacylglycerol pool of senescent cells. SIGNIFICANCE: This set of observations is the first demonstration of a profound modification in lipid metabolism, particularly fatty acid biosynthesis and desaturation, caused by the senescence process and contributes to the increasing body of evidence linking de novo lipogenesis with cellular proliferation.


Assuntos
Senescência Celular , Ácidos Graxos Dessaturases/análise , Ácido Graxo Sintases/análise , Ácidos Graxos/biossíntese , Fibroblastos/metabolismo , Estearoil-CoA Dessaturase/análise , Células Cultivadas , Fibroblastos/citologia , Humanos , Ácido Oleico/farmacologia
11.
Int J Oncol ; 33(4): 839-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18813799

RESUMO

Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue MUFA and several types of cancer has been reported, but a causal relationship between the function of SCD1, the main human SCD isoform, and cancer development has not yet been firmly established. Here we report that the stable knockdown of SCD1 gene expression in A549 human lung adenocarcinoma cells decreased the ratio MUFA/SFA in total lipids and inhibited the incorporation of glucose into cell lipids. Cell proliferation and anchorage-independent growth were considerably decreased in SCD1-depleted cells, whereas the rate of apoptosis was elevated, with respect to control A549 cells. In addition, phosphorylation of Akt-Ser473 and GSK-3beta-Ser9 was found notably impaired in SCD1-ablated A549 cells. Interestingly, the effects of SCD1 blockade on Akt activation, cancer cell growth and apoptosis could not be reversed by exogenously added oleic acid. Remarkably, the reduction of SCD1 expression in lung cancer cells significantly delayed the formation of tumors and reduced the growth rate of tumor xenografts in mice. Our study demonstrates that SCD1 activity regulates Akt activation and determines the rate of cell proliferation, survival and invasiveness in A549 cancer cells and shows, for the first time, that SCD1 is a key factor in the regulation of tumorigenesis in vivo.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Lipídeos/química , Camundongos , Camundongos Nus , Ácido Oleico/metabolismo , Fenótipo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
J Biol Chem ; 280(27): 25339-49, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15851470

RESUMO

Saturated and monounsaturated fatty acids are the most abundant fatty acid species in mammalian organisms, and their distribution is regulated by stearoyl-CoA desaturase, the enzyme that converts saturated into monounsaturated fatty acids. A positive correlation between high monounsaturated fatty acid levels and neoplastic transformation has been reported, but little is still known about the regulation of stearoyl-CoA desaturase in cell proliferation and apoptosis, as well as in cancer development. Here we report that simian virus 40-transformed human lung fibroblasts bearing a knockdown of human stearoyl-CoA desaturase by stable antisense cDNA transfection (hSCDas cells) showed a considerable reduction in monounsaturated fatty acids, cholesterol, and phospholipid synthesis, compared with empty vector transfected-simian virus 40 cell line (control cells). hSCDas cells also exhibited high cellular levels of saturated free fatty acids and triacylglycerol. Interestingly, stearoyl-CoA desaturase-depleted cells exhibited a dramatic decrease in proliferation rate and abolition of anchorage-independent growth. Prolonged exposure to exogenous oleic acid did not reverse either the slower proliferation or loss of anchorage-independent growth of hSCDas cells, suggesting that endogenous synthesis of monounsaturated fatty acids is essential for rapid cell replication and invasiveness, two hallmarks of neoplastic transformation. Moreover, apoptosis was increased in hSCDas cells in a ceramide-independent manner. Finally, stearoyl-CoA desaturase-deficient cells were more sensitive to palmitic acid-induced apoptosis compared with control cells. Our data suggest that, by globally regulating lipid metabolism, stearoyl-CoA desaturase activity modulates cell proliferation and survival and emphasize the important role of endogenously synthesized monounsaturated fatty acids in sustaining the neoplastic phenotype of transformed cells.


Assuntos
Fibroblastos/citologia , Fibroblastos/enzimologia , Estearoil-CoA Dessaturase/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Radioisótopos de Carbono , Adesão Celular , Divisão Celular/fisiologia , Linhagem Celular Transformada , Sobrevivência Celular/fisiologia , Ceramidas/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Homeostase/fisiologia , Humanos , Levanogestrel/toxicidade , Pulmão/citologia , Fosfolipídeos/biossíntese , Fosfolipídeos/metabolismo , Ácidos Esteáricos/farmacocinética , Triglicerídeos/metabolismo
13.
Biochim Biophys Acta ; 1687(1-3): 141-51, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15708362

RESUMO

The precise role of monounsaturated fatty acid (MUFA) synthesis in cell proliferation and programmed cell death remains unknown. The strong correlation of high levels of MUFA and neoplastic phenotype suggest that the regulation of stearoyl CoA desaturase (SCD) must play a significant role in cancer development. In this study, the levels of SCD protein and activity were investigated in normal (WI38) and SV40-transformed (SV40-WI38) human lung fibroblasts. Thus, the activity of SCD on exogenous [14C]stearic acid and endogenous [14C]acetate-labeled fatty acids was increased by 2.2- and 2.6-fold, respectively, in SV40-WI38 compared to WI38 fibroblasts. Concomitantly, a 3.3-fold increase in SCD protein content was observed in SV40-transformed cells. Cell transformation also led to high levels of MUFA, which was paralleled by a more fluid membrane environment. Furthermore, the levels of PPAR-gamma, a well-known activator of SCD expression, were highly increased in SV40-transformed fibroblasts. SCD activity appeared linked to the events of programmed cell death, since incubations with 40 microM etoposide induced apoptosis in SV40 cells, and led to a decrease in fatty acid synthesis, SCD activity and in MUFA cellular levels. Taken together, these results suggest that SCD protein and activity levels are associated with the events of neoplastic cell transformation and programmed cell death.


Assuntos
Transformação Celular Neoplásica , Ácidos Graxos Monoinsaturados/metabolismo , Fibroblastos/enzimologia , Vírus 40 dos Símios/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Transformada , Etoposídeo/farmacologia , Ácidos Graxos Monoinsaturados/química , Fibroblastos/efeitos dos fármacos , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , PPAR gama/metabolismo , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...